
Andreas Schmitz  2022-09-23

Everything you didn't want to
know about Cross-site Request
Forgery in Django
— DjangoCon EU 2022 —

1

$ whoami
Andreas Schmitz

• Lead Software Development Engineer at …

• ✉ me@andreas.earth

• 🌍 www.andreas.earth

• … wirbauen.digital

• 🏗 Construction-Tech Startup

• 📍 Cologne, Germany

• 🚀 Trying to digitize the Construction Industry

2

mailto:me@andreas.earth
http://www.andreas.earth

Cross-site… what?

3

Cross-site… what?!
Do these questions sound familiar?

4

The Dangers
Past CSRF Attacks in the Industry

5

(1) (2)

Other stories you might like

Biting the hand that feeds IT © 1998–2022

CSO

Jenkins warns of security holes in these 25 plugins
Relax, most of the vulnerabilities so far have, er, no fix

ABOUT US

Who we are

Under the hood

Contact us

Advertise with us

 MORE CONTENT

Latest News

Popular Stories

Forums

Whitepapers

Webinars

 SITUATION PUBLISHING

The Next Platform

DevClass

Blocks and Files

Continuous Lifecycle London

M-cubed

Situation Publishing

Your Consent Options Cookies Privacy Ts&Cs

{* *}

Thomas Claburn in San Francisco Thu 30 Jun 2022 // 20:22 UTC

Jenkins, an open-source automation server for continuous integration and
delivery (CI/CD), has published 34 security advisories covering 25 plugins
used to extend the software.

Eleven of the advisories are rated high severity, 14 are medium, and 9 are
said to be low.

The vulnerabilities described include: cross-site scripting (XSS); passwords,
API keys, secrets, and tokens stored in plaintext; cross-site request forgery
(CSRF); and missing and incorrect permission checks.

The following plugins are affected:

Build Notifications Plugin, build-metrics Plugin, Cisco Spark Plugin,
Deployment Dashboard Plugin, Elasticsearch Query Plugin, eXtreme
Feedback Panel Plugin, Failed Job Deactivator Plugin, GitLab
Plugin, HPE Network Virtualization Plugin, Jigomerge Plugin, Matrix
Reloaded Plugin, OpsGenie Plugin, Plot Plugin, Project Inheritance
Plugin, Recipe Plugin, Request Rename Or Delete Plugin, requests-
plugin Plugin, Rich Text Publisher Plugin, RocketChat Notifier
Plugin, RQM Plugin, Skype notifier Plugin, TestNG Results Plugin,
Validating Email Parameter Plugin, XebiaLabs XL Release Plugin,
and XPath Configuration Viewer Plugin.

Sean Gallagher, senior threat researcher at Sophos, told The Register that
individually, the vulnerabilities should not be a huge concern.

"But taken as a whole, that’s a whole lot of attack
surface," said Gallagher, adding that many
organizations are not particularly diligent about
securing their cloud Jenkins instances.

Jenkins, he said, is fairly common and can be taken as another example of
an under-supported open-source platform.

"What is most concerning is how many of these are no-fix," said Gallagher.

Indeed, for 21 out of the 25 cited plugins, no fixes are available.

The June 30 advisory follows a similar advisory from June 22, covering 28
plugins and Jenkins core software. For 14 of these plugins, no fix is
available.

“These kinds of flaws are not uncommon – in past research at NCC Group,
we’ve found vulnerabilities in over 100 Jenkins plugins," said Jennifer
Fernick, SVP and global head of research at NCC Group, a security
consultancy, in an email to The Register.

"Concerningly, several of even the high-severity vulnerabilities in today’s
advisory lack patches, leaving development teams using these plugins
entirely vulnerable to attack.

"This is particularly concerning given the highly privileged nature of
automation tools such as Jenkins, and the ways in which insecure CI/CD
pipelines can enable supply chain attacks during the software development
process.”

In a write-up earlier this year, NCC described ten
attacks that compromised Jenkins and other CI/CD
systems during security assessments for clients.

These attacks were made possible, NCC said, mostly
by the same root causes, including default
configurations, overly permissive permissions and roles,
lack of security controls, and lack of system
segmentation.

The security firm describes one attack involving a
GitHub OAuth plugin that was deployed in Jenkins for

authentication and authorization. Because the plugin granted READ
permissions to all authenticated users and the "Use GitHub repository
permissions" option was checked to allow anyone with a GitHub account
access the Jenkins web login interface, an NCC researcher was able to
register and use a personal hosted email account to gain access to the
client's projects.

"CI/CD pipelines are complex environments," NCC's post explained. "This
complexity requires methodical & comprehensive reviews to secure the
entire stack. Often a company may lack the time, specialist security
knowledge, and people needed to secure their CI/CD pipeline(s).

"Fundamentally, a CI/CD pipeline is remote code execution, and must be
configured properly." ®

Send us news

Similar topics
Continuous Development Devops Jenkins Security

Broader topics
Continuous Delivery Continuous Integration Development Open Source

Software

Narrower topics
2FA Advanced persistent threat API Authentication Black Hat Bug Bounty

Cloud native Common Vulnerability Scoring System Cybercrime Cybersecurity

Cybersecurity and Infrastructure Security Agency Cybersecurity Information Sharing Act

Data Breach Data Protection Data Theft DDoS Digital certificate Encryption

Exploit Firewall Hacker Hacking Identity Theft Infosec Kenna Security

NCSC Palo Alto Networks Password Phishing Ransomware

Remote Access Trojan REvil RSA Conference Spamming Spyware

Surveillance TLS Trojan Trusted Platform Module Vulnerability Wannacry

Zero trust

Corrections

Devops tool Jenkins now
requires Java 11: This might
sting a bit
Final shift set for version 2.357 of
developer automation platform

DEVOPS 13 days |

Microsoft's July Patch
Tuesday fixes actively
exploited bug
PATCH TUESDAY No, Windows
Autopatch didn't kill the monthly
patchapalooza
PATCHES 2 days |

Google battles bots, puts
Workspace admins on alert
No security alert fatigue here

SECURITY 14 days |

Database performance at any
scale
How Amazon DynamoDB is designed
to handle anything you can throw at it

SPONSORED FEATURE

What to do about inherent
security flaws in critical
infrastructure?
Industrial systems' security got 99
problems and CVEs are one. Or more

RESEARCH 11 days |

1.9m patient records
exposed in healthcare debt
collector ransomware attack
The P in PFC now stands for Pwned

CYBER-CRIME 17 hrs |

Pentester says he broke into
datacenter via hidden route
running behind toilets
Lock down your 'piss corridor' – or
even better, don't have one at all

OFFBEAT 7 days |

Zero Trust: What does it
actually mean – and why
would you want it?
SYSTEMS APPROACH 'Narrow and
specific access rights after
authentication' wasn't catchy enough
NETWORKS 14 days |

Amazon squashes years-old
authentication bugs in AWS
Kubernetes service
Three vulnerabilities in one line of
code

SECURITY 2 days |

Defense contractor pays $9m
to settle whistleblower's
cybersecurity allegations
Former Aerojet Rocketdyne employee
cites failure to meet minimums for
NASA, Pentagon
CSO 3 days |

Here today, gone to Maui:
That's your data captured by
North Korean ransomware
CISA, FBI, US Treasury warn Kim
Jong-un's latest malware has hit
healthcare orgs
CYBER-CRIME 8 days |

Germany unveils plan to
tackle cyberattacks on
satellites
Vendors get checklist on what to do
when crooks inevitably turn up in
space
SECURITY 9 days |

The Register - Independent news and views for the tech
community. Part of Situation Publishing

As a whole, that’s a
whole lot of attack
surface

CIOs largely
believe their
software supply
chain is vulnerable

READ MORE

SIGN IN

14.07.22, 16:09
Page 1 of 1

(3)

(4)

(5)(6)(7)

(8)

Terminology

Origin

• Scheme, Host, and Port (Tuple)

• Same-origin

• Tuple of two URLs match

• Cross-origin

• Tuple of two URLs DO NOT match

6

https://2022.djangocon.eu/about/credits/

URL Same-Origin

https://2022.djangocon.eu/home/ ✔

https://2022.djangocon.eu:8443/home/ ❌

http://2022.djangocon.eu/about/credits/ ❌

https://2021.djangocon.eu/about/credits/ ❌

https://2022.djangocon.us/about/credits/ ❌

Terminology

• Effective Top-level Domain (eTLD)

• a.k.a. Public Suffixes

• Examples: .com, .pt, .co.uk, .github.io, .pvt.k12.ma.us

• List changes over time

• Registrable domain

• preceding name + eTLD

• Examples: example.com, djangocon.eu, abc123.github.io

7

https://publicsuffix.org/

Terminology

Site

• Registrable domain of an URL

• E.g. site of https://2022.djangocon.eu is
djangocon.eu

• Same-site

• If two sites are identical

• Cross-site

• If two sites are different

8

https://2022.djangocon.eu/about/credits/

URL Same-Site

https://2022.djangocon.eu/home/ ✔

https://2022.djangocon.eu:8443/home/ ✔

http://2022.djangocon.eu/about/credits/ ✔

https://2022.djangocon.eu/about/credits/ ✔

https://2022.djangocon.us/about/credits/ ❌

https://2022.djangocon.eu
http://djangocon.eu

Web Security Concepts

• Same-origin Policy (SOP)

• Limits cross-origin interactions

• Typically allowed: cross-origin writes and embedding

• Typically blocked: cross-origin reads

• Examples

• Cross-origin image embedding is allowed, reading image data is blocked

• Cross-origin form submission (write) is allowed

9

Web Security Concepts

• Cross-origin Resource Sharing (CORS)

• Allows opening up Same-origin Policy (JavaScript cross-origin read)

• Server specifies allowed origins (HTTP headers)

• Example

• Cross-origin read of image data

10

Cross-site Request Forgery

11

Cross-site Request Forgery is a class of web
vulnerabilities that allows an attacker to trick a

victim into performing unintended actions.

12

CSRF Attack Flow Example

13

„Sleeping Place
Allocation Service‟

S.P.A.S.

https://spas.org

5
Claims best s

leeping place

4
Exploits vulnerability
undoing Alice's claim

3
Opens ad page

On Sale

„Extra Fluffy Blankies‟

2
Sends link to

malicious page

CSRF
Vulner-

able

Ad

20% Off

13:37:42

Extra Fluffy
Blanky

BUY NOW

https://all-the-fluff.com

1 Claims best sleeping place

Mallory

Alice

https://spas.org
https://unsplash.com/photos/i4W8OINLI_I
https://pxhere.com/en/photo/1241543

Demo
— CSRF Attack in Action —

14

Vulnerability Details
Why does this work?

• (Cross-origin) Requests automatically include associated credentials

• Session cookies

• Cached HTTP Basic Authentication

• Client Certificates

• No unpredictable request parameters

• Backend cannot distinguish legitimate from an illegitimate request

15

Vulnerability Details
Which requests are vulnerable?

"Simple Requests"

• GET endpoints that perform state changes

• POST endpoints that accept

• application/x-www-form-urlencoded, multipart/form-data or text/plain

• PATCH, DELETE, and PUT endpoints in some cases

• Support in some frameworks via hidden input fields

• HTML5 draft support

16

Vulnerability Details
What about XMLHttpRequest?

XMLHttpRequest

• Blocked by Same-origin Policy (SOP)

• Requires Cross-origin Resource Sharing (CORS)

• Careful: only allow trusted origins

• Trusting an origin defeats most CSRF protections

• Avoid things like Access-Control-Allow-Origin: *

17

Vulnerability Details
What about the fetch API?

fetch

• Vulnerable with mode: "no-cors"

• Only allows "Simple requests"

• Same capabilities as GET and normal forms (see two slide ago)

• e.g. Content-Type application/json, text/xml etc. are not allowed

• Other modes are protected by the Same-origin Policy

18

Vulnerability Details
What is not vulnerable?

• Any kind of credential that is not automatically attached

• e.g. Bearer Tokens (JWT, …)

• PSA: Don't save tokens in local storage

• Vulnerable to Cross-site Scripting!

• Can be catastrophic for JWT (no way to invalidate)

• User is not logged in

• Except Login CSRF

19

Code
— CSRF Attack in Action —

20

Prevention Measures

21

Prevention Measures
How to do defend against CSRF attacks

Common techniques

1. Synchronizer Token Pattern

2. Double Submit Cookie

3. SameSite Cookie Attribute

4. Validating Origin and Referer [sic] Headers

22

23

CSRF token

On first visit, the server…

• generates unique, secret and
unpredictable CSRF token

• stores the token in the session

• returns the token in the response

• via form field, header, meta tag, …

Store

CSRF token

Session

Initial request

ServerClient

The stateful approach
Synchronizer Token Pattern

Synchronizer Token Pattern
The stateful approach

For "unsafe" requests, the client …

• extracts the CSRF token from
response

• attaches the CSRF token to state-
changing request

• via header, form field, …

24

Unsafe request

CSRF token

Client Server

CSRF token
Client

Store

CSRF token

Session

Initial request

Server

Synchronizer Token Pattern
The stateful approach

For "unsafe" requests, the server…

• checks existence of the token in the
request

• compares it to the token in the
session

• aborts if they do not match

25

Allow or deny

Compare
tokens

Retrieve CSRF

token

Server

Unsafe request

CSRF token

CSRF token

Client

Store

CSRF token

Session

Initial request

ServerClient

Synchronizer Token Pattern
The stateful approach

• Prevents CSRF. How?

• Attacker cannot create a valid request without the token

• Token cannot be guessed or retrieved

• Variations

• Per-session token

• Per-request token

• More secure, but degrades usability (e.g. breaks back button)

26

Double Submit Cookie
The stateless approach

27

• Similar to Synchronizer Token pattern

• Difference: Cookie instead of Session

• Attacker cannot read or change the cookie

• Less secure

• Session and token are not tied together

• Sub-domains takeover allows overwriting cookie

Double Submit Cookie
The stateless approach

28

• For improved security

• Sign/Encrypt cookie (e.g. HMAC)

• Prevents overwriting from sub-domain without key

SameSite Session Cookie
An overdue improvement

• "New" cookie attribute (introduced 2016)

• Allows restricting cookies to same-site context

• Powerless against cross-origin, same-site attacks

• Can prevent CSRF when set for session cookies

• Good browser support (94.00% globally)

29

SameSite Session Cookie
Configuration

• SameSite=Strict

• Cookie is only sent in same-site context

• SameSite=Lax (recommended)

• Cookie is sent in safe cross-site context, e.g. link or GET form

• Default, if attribute is missing (modern browsers)

• SameSite=None

• Cookie is sent in all contexts

• Requires secure attribute

30

There's more…
Other techniques that (partially) work

• Checking Origin HTTP header

• Checking Referer [sic] HTTP header

• One Time Tokens

• Re-Authentication

• Captchas

• …

31

CSRF Prevention Measures
Recommendation

Combine multiple measures

• Implement Double Submit Cookie or Synchronizer Token Pattern

• Configure SameSite cookie attribute as tight as possible

• Validate Origin and Referer [sic] headers

32

CSRF Prevention in Django

33

CSRF Protection
Built-in & enabled by default

34

CSRF Prevention in Django
Batteries included

• Double submit cookie (CSRF_USE_SESSIONS=False, default)

• Synchronizer token pattern (CSRF_USE_SESSIONS=True)

• SameSite: Lax by default

• csrftoken and session cookie

• Origin and Referer [sic] validation (CSRF_TRUSTED_ORIGINS)

35

CSRF Prevention in Django
The components

• CsrfViewMiddleware

• Token creation

• CSRF token session and cookie handling

• Token enforcement and check in unsafe requests

• Origin and Referer [sic] validation

36

CSRF Prevention in Django
The components

• django.middleware.csrf.get_token()

• Creates new CSRF token or returns existing one

• django.middleware.csrf.rotate_token()

• Replaces the existing CSRF token with a new one

• Called on login (contrib.auth)

37

CSRF Prevention in Django
The components

• {% csrf_token %} template tag

• Renders CSRF token in hidden input field

• Token value is masked (BREACH attack prevention)

38

CSRF Prevention in Django
Bird's-eye View

• Activate CsrfViewMiddleware (default)

• Don't perform state changes in safe requests (GET, HEAD, …)

• HTML Forms: Add {% csrf_token %} to forms tag in template

• XHR/fetch: Extract token (cookie or body) and set X-CSRFToken header

• More details "How to use Django’s CSRF protection"

39

https://docs.djangoproject.com/en/dev/howto/csrf/#using-csrf

CSRF Prevention in Django
Limitations

• CSRF token cookie is not signed or encrypted

• Subdomains can circumvent CSRF protection

• Django's Documentation on this: "CSRF Limitations"

40

https://docs.djangoproject.com/en/4.1/ref/csrf/#limitations

CSRF Prevention in Django
Django REST Framework

• TokenAuthenticationBackend: Not required

• No automatically attached credentials

• SessionAuthenticationBackend: Required and enforced

• Only authenticated requests require CSRF token

• Important: Add @csrf_protect decorator to custom login views

• Prevents Login CSRF attack

41

CSRF Prevention in Django and
Single-page Applications

42

CSRF Prevention in Django
Single-Page Application Setup: Frontend

• Problem: Headless SPAs have no initial response to extract CSRF token from

• Solution: Request CSRF token on page load, log-in and log-out

• View that needs to be called anyway (e.g. /accounts/me/)

• Dedicated view to request token (e.g. /csrf)

43

CSRF Prevention in Django
Single-Page Application Setup: Frontend

• Set X-CSRFToken header for unsafe requests

• Frontend requests must include credentials

• XMLHttpRequest

• withCredentials = true

• fetch

• credentials: "include"

44

CSRF Prevention in Django
Single-Page Application Setup: Backend

45

• Synchronizer Token Pattern (CSRF_USE_SESSIONS=True)

• Include CSRF token in response body

• JSON should be fine (JSON Hijacking seems to not be a thing anymore)

• Double Submit Cookie (CSRF_USE_SESSIONS=False)

• Include CSRF token in response body or extract from cookie

Cross-origin, same-site SPAs (e.g. http://web.foo.pt and http://api.foo.pt)

• Configure trusted Origins

• CSRF_TRUSTED_ORIGINS (frontend and backend origins)

• Install and configure django-cors-headers

• CORS_ALLOWED_ORIGINS (frontend)

• CORS_ALLOW_CREDENTIALS=True

• For Double Submit Cookie

• Configure CSRF_COOKIE_DOMAIN (e.g. ".foo.pt")

CSRF Prevention in Django
Single-Page Application Setup: Backend

46

CSRF Prevention in Django
Single-Page Application Setup: Backend

• SPA and backend should be same-site

• Cross-site setup (not recommended)

• Set SameSite=None for the session (and csrftoken) cookies

• Requires CSRF token in response body

• Can't extract CSRF token from cookie (cross-site)

• Modern cross-site tracking prevention can interfere

47

Demo & Code
— SPA & CSRF Prevention in Action —

48

CSRF Prevention in Django
Most Important Settings

• CSRF_USE_SESSIONS

• True: Synchronizer Token Pattern

• False: Double Submit Cookie (default)

• CSRF_COOKIE_HTTPONLY

• False: Allows access to CSRF token in cookie via JavaScript (default)

• True: Can't access CSRF token in cookie via JavaScript

• True offers no security benefit

X

CSRF Prevention in Django
Most Important Settings

• CSRF_TRUSTED_ORIGINS

• List of trusted origins for unsafe requests

• Origin and Referer [sic] header (if present) values must match Host header

• e.g. Single-page application and backend host

X

CSRF Prevention in Django
Most Important Settings

• CSRF_COOKIE_SAMESITE and SESSION_COOKIE_SAMESITE

• Most cases leave the default "Lax"

• "Strict" high-security or if linking from another site is not necessary

• CSRF_COOKIE_SECURE and SESSION_COOKIE_SECURE

• Set to True on production system

• Cookie is only sent when HTTPS is used

X

CSRF Prevention in Django
Most Important Settings

• CSRF_COOKIE_DOMAIN and SESSION_COOKIE_DOMAIN

• None by default (HostOnly cookie, restricted to current domain)

• Only set, if application needs to be reached via a sub-domain

• SESSION_COOKIE_PATH and CSRF_COOKIE_PATH

• Path of your Django application

• "/" by default

• Only set, if application root is not "/" (e.g. shared hosting)

X

CSRF Prevention in Django
Packages & Resources

• django-cors-headers

• Allows configuring Cross-Origin Resource Sharing (CORS)

• django-ai-kit-auth

• Opinionated Session-based Authentication setup for Django REST Framework & React

• OWASP CSRF

• Overview & CSRF Prevention Cheat Sheet

49

https://github.com/adamchainz/django-cors-headers
https://github.com/ambient-innovation/django-ai-kit-auth
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Slides & All Resources

50

andreas.earth/s/djangocon-22

References
(1) https://nvd.nist.gov/vuln/search/results?

form_type=Basic&results_type=overview&query=csrf&search_type=all&isCpeNameSearch=false

(2) https://portswigger.net/daily-swig/horde-webmail-contains-zero-day-rce-bug-with-no-patch-on-
the-horizon

(3) https://www.theregister.com/2022/06/30/jenkins_plugins_security_advisories/

(4) https://nakedsecurity.sophos.com/2014/12/05/all-paypal-accounts-were-1-click-away-from-
hijacking/

(5) https://securityaffairs.co/wordpress/81219/hacking/facebook-csrf-flaw.html

(6) https://portswigger.net/daily-swig/chain-of-vulnerabilities-led-to-rce-on-cisco-prime-servers

(7) https://portswigger.net/daily-swig/reddit-patches-csrf-vulnerability-that-forced-users-to-view-
nsfw-content

(8) https://www.forbes.com/sites/daveywinder/2020/08/03/meetup-security-flaws-exposed-44-
million-members-to-data-loss-and-payment-threat-checkmarx-research/?sh=39eee38112d6

X

Image Attributions

• Image Source: pexels.com

• Images are links to the source

X

Thank you!

51

